Convergence in law in the second Wiener/Wigner chaos

نویسنده

  • Ivan Nourdin
چکیده

Let L be the class of limiting laws associated with sequences in the second Wiener chaos. We exhibit a large subset L0 ⊂ L satisfying that, for any F∞ ∈ L0, the convergence of only a finite number of cumulants suffices to imply the convergence in law of any sequence in the second Wiener chaos to F∞. This result is in the spirit of the seminal paper [12], in which Nualart and Peccati discovered the surprising fact that convergence in law for sequences of multiple Wiener-Itô integrals to the Gaussian is equivalent to convergence of just the fourth cumulant. Also, we offer analogues of this result in the case of free Brownian motion and double Wigner integrals, in the context of free probability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wigner Chaos and the Fourth Moment

We prove that a normalized sequence of multiple Wigner integrals (in a fixed order of free Wigner chaos) converges in law to the standard semicircular distribution if and only if the corresponding sequence of fourth moments converges to 2, the fourth moment of the semicircular law. This extends to the free probabilistic setting some recent results by Nualart and Peccati on characterizations of ...

متن کامل

A third-moment theorem and precise asymptotics for variations of stationary Gaussian sequences

In two new papers [2] and [8], sharp general quantitative bounds are given to complement the wellknown fourth moment theorem of Nualart and Peccati, by which a sequence in a …xed Wiener chaos converges to a normal law if and only if its fourth cumulant converges to 0. The bounds show that the speed of convergence is precisely of order the maximum of the fourth cumulant and the absolute value of...

متن کامل

Convergence of densities of some functionals of Gaussian processes

We study the convergence of densities of a sequence of random variables to a normal density. The random variables considered are nonlinear functionals of a Gaussian process. The tool we are using is the Malliavin calculus, in particular, the integration by parts formula and the Stein’s method. Applications to the convergence of densities of the least square estimator for the drift parameter in ...

متن کامل

Convergence in total variation on Wiener chaos

Let {Fn} be a sequence of random variables belonging to a nite sum of Wiener chaoses. Assume further that it converges in distribution towards F∞ satisfying Var(F∞) > 0. Our rst result is a sequential version of a theorem by Shigekawa [25]. More precisely, we prove, without additional assumptions, that the sequence {Fn} actually converges in total variation and that the law of F∞ is absolutely ...

متن کامل

Multidimensional semicircular limits on the free Wigner chaos

We show that, for sequences of vectors of multiple Wigner integrals with respect to a free Brownian motion, componentwise convergence to semicircular is equivalent to joint convergence. This result extends to the free probability setting some findings by Peccati and Tudor (2005), and represents a multidimensional counterpart of a limit theorem inside the free Wigner chaos established by Kemp, N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012